1,555 research outputs found

    Languages adapt to their contextual niche

    Get PDF

    Segue 1: An Unevolved Fossil Galaxy from the Early Universe

    Get PDF
    We present Magellan/MIKE and Keck/HIRES high-resolution spectra of six red giant stars in the dwarf galaxy Segue 1. Including one additional Segue 1 star observed by Norris et al. (2010), high-resolution spectra have now been obtained for every red giant in Segue 1. Remarkably, three of these seven stars have metallicities below [Fe/H] = -3.5, suggesting that Segue 1 is the least chemically evolved galaxy known. We confirm previous medium-resolution analyses demonstrating that Segue 1 stars span a metallicity range of more than 2 dex, from [Fe/H] = -1.4 to [Fe/H] = -3.8. All of the Segue 1 stars are alpha-enhanced, with [alpha/Fe] ~ 0.5. High alpha-element abundances are typical for metal-poor stars, but in every previously studied galaxy [alpha/Fe] declines for more metal-rich stars, which is typically interpreted as iron enrichment from supernova Ia. The absence of this signature in Segue 1 indicates that it was enriched exclusively by massive stars. Other light element abundance ratios in Segue 1, including carbon-enhancement in the three most metal-poor stars, closely resemble those of metal-poor halo stars. Finally, we classify the most metal-rich star as a CH star given its large overabundances of carbon and s-process elements. The other six stars show remarkably low neutron-capture element abundances of [Sr/H] < -4.9 and [Ba/H] < -4.2, which are comparable to the lowest levels ever detected in halo stars. This suggests minimal neutron-capture enrichment, perhaps limited to a single r-process or weak s-process synthesizing event. Altogether, the chemical abundances of Segue 1 indicate no substantial chemical evolution, supporting the idea that it may be a surviving first galaxy that experienced only one burst of star formation.Comment: ApJ, accepted, 20 pages (emulateapj), 9 figure

    Development of a Multi-Probe Kelvin Scanner Device for Industrially-Relevant Characterization of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites

    Get PDF
    Carbon fiber reinforced thermoplastic (CFRTP) composites are becoming increasingly attractive materials in manufacturing due to their lightweight nature, mechanical strength, and corrosion resistance. Surface activation of these materials is usually required during processing to increase the bond strength of assemblies (aerospace and automotive industries) or improve adhesion with implants (biomedical industry). Industrially-relevant, nondestructive quality control methods for assessing the activation state of these materials do not currently exist, however. Applying principles discovered through the use of scanning probe microscopy, a multiple-probe Kelvin scanning (MPKS) device has been developed that can assess the uniformity of the activation state of plasma-treated CFRTP surfaces. The device can distinguish between control and plasma-treated samples and its measurements have been correlated with shear bond strength of epoxy-bonded assemblies. With the multiple probes increasing measurement speed, the automated device can be scaled for use in manufacturing-relevant environments and improve upon current quality control practices

    Statistical discrimination in the automation of cytogenetics and cytology

    Get PDF

    Function, selection and innateness : the emergence of language universals

    Get PDF

    Spectroscopic Confirmation of the Dwarf Galaxies Hydra II and Pisces II and the Globular Cluster Laevens 1

    Get PDF
    We present Keck/DEIMOS spectroscopy of stars in the recently discovered Milky Way satellites Hydra II, Pisces II, and Laevens 1. We measured a velocity dispersion of 5.4 (+3.6 -2.4) km/s for Pisces II, but we did not resolve the velocity dispersions of Hydra II or Laevens 1. We marginally resolved the metallicity dispersions of Hydra II and Pisces II but not Laevens 1. Furthermore, Hydra II and Pisces II obey the luminosity-metallicity relation for Milky Way dwarf galaxies ( = -2.02 +/- 0.08 and -2.45 +/- 0.07, respectively), whereas Laevens 1 does not ( = -1.68 +/- 0.05). The kinematic and chemical properties suggest that Hydra II and Pisces II are dwarf galaxies, and Laevens 1 is a globular cluster. We determined that two of the previously observed blue stars near the center of Laevens 1 are not members of the cluster. A third blue star has ambiguous membership. Hydra II has a radial velocity = 303.1 +/- 1.4 km/s, similar to the leading arm of the Magellanic stream. The mass-to-light ratio for Pisces II is 370 (+310 -240) M_sun/L_sun. It is not among the most dark matter-dominated dwarf galaxies, but it is still worthy of inclusion in the search for gamma rays from dark matter self-annihilation.Comment: Accepted to ApJ. v2 has been revised in response to the referee's repor

    Are the Ultra-Faint Dwarf Galaxies Just Cusps?

    Full text link
    We develop a technique to investigate the possibility that some of the recently discovered ultra-faint dwarf satellites of the Milky Way might be cusp caustics rather than gravitationally self-bound systems. Such cusps can form when a stream of stars folds, creating a region where the projected 2-D surface density is enhanced. In this work, we construct a Poisson maximum likelihood test to compare the cusp and exponential models of any substructure on an equal footing. We apply the test to the Hercules dwarf (d ~ 113 kpc, M_V ~ -6.2, e ~ 0.67). The flattened exponential model is strongly favored over the cusp model in the case of Hercules, ruling out at high confidence that Hercules is a cusp catastrophe. This test can be applied to any of the Milky Way dwarfs, and more generally to the entire stellar halo population, to search for the cusp catastrophes that might be expected in an accreted stellar halo.Comment: Accepted for publication in ApJ Letters. Minor revisions from version
    corecore